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The possible signature of chaos in Rydberg atoms has been studied in terms of the dynamic profiles of the
chemical hardness (η), polarizability (R), and uncertainty product (Vps). A hydrogen atom in the electronic
ground state (n ) 1) and in an excited electronic state (n ) 15) behaves differently when placed in both one-
and two-color laser pulses. Temporal evolution ofη, R, andVps for these two cases (n ) 1 andn ) 15) show
marked differences. It appears that a largerVps and a smallerη value signal a chaotic behavior.

I. Introduction

Chemical hardness1-3 (η) has turned out to be a cardinal index
of molecular structure, reactivity, bonding, and dynamics.
Pearson1 introduced the concept of hardness in the chemistry
literature through his famous hard-soft acid-base (HSAB)
principle, which can be stated as “hard likes hard and soft likes
soft in an acid-base reaction”. Density functional theory3,4

(DFT) has provided the following quantitative definition5 of
hardness for anN-electron system with total energyE and
external potentialV(r):

Equivalently, it can be expressed as6

or as its following approximate version, as suggested by
Berkowitz et al.7

where f(r) is the Fukui function8,9 and the hardness kernel is
defined as7

whereF[F] is the Hohenberg-Kohn universal functional5 of
DFT.

Another important electronic structure principle based on the
concept of hardness is the maximum hardness principle1,10

(MHP). The MHP is stated as10 “there seems to be a rule of
nature that molecules arrange themselves so as to be as hard as
possible”. Formal proofs of both HSAB6,11 and maximum
hardness principles12 have been furnished using DFT.

The complete characterization of anN-particle system under
the influence of the external potentialV(r) needs onlyN and
V(r). The response of the system subjected to a change inN at

fixed V(r) can be measured byη. On the other hand, the linear
response function3 takes care of the variation ofV(r) at constant
N. If the system is acted upon by a weak electric field,
polarizability (R) may be used as a measure of the corresponding
response. A minimum polarizability principle13-15 has been
proposed, which may be written as “a stable configuration or a
favorable process is associated with minimum polarizability”.

Dynamics of these reactivity parameters (η andR) have been
studied13,14in the contexts of various time dependent processes.
Whetherη and R can provide some insight into the quantum
domain behavior of a classically chaotic system is yet to be
analyzed. Rydberg atoms and molecules in an oscillating electric
field have been considered to be “veritable gold mines for
exploring the quantum aspects of chaos”.16 Depending on the
frequency and the field intensity, hydrogen16,17 and helium18

atoms in the presence of an external field have been shown to
exhibit regular/chaotic dynamics. Both quantum fluid dynam-
ics19,20 (QFD) and quantum theory of motion21,22 (QTM) have
provided quantum signatures of chaos in Rydberg atoms. In
QFD19 the overall motion of the system under consideration is
mapped onto that of a “probability fluid” having densityF(r,t)
and current densityj(r,t) under the influence of the external
classical potential augmented by a quantum potential19-22 given
by

and F(r,t) and ø(r,t) (j ) F∇ø) are respectively obtained19-22

from the amplitude and the phase of the wave function. In
QTM,21 a physical system is described in terms of “wave and
particle”. While the wave motion is governed by the solution
to the time dependent Schro¨dinger equation (TDSE), the particle
motion is followed by solving the pertinent Newton equation
of motion with forces originating from both classical and
quantum potentials. Important insight into the chaotic dynamics
has been obtained20 throughF versus-ø plots in QFD, where
it has been shown20 that F and -ø can be considered to be
“canonically conjugate”. In QTM they are obtained22 in terms
of the distance between two initially close Bohmian trajectories
and the associated Kolmogorov-Sinai entropy.

In the present paper we monitor the possible regular/chaotic
dynamics through the time evolution of various reactivity indices* Author for correspondence. E-mail address: pkcj@hijli.iitkgp.ernet.in.
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of a hydrogen atom in the ground and highly excited electronic
states in the presence of one-color and two-color laser pulses.
The theoretical background of the present work is provided in
section II. Section III presents the numerical details, and the
results and discussions are given in section IV. Finally, section
V contains some concluding remarks.

II. Theoretical Background

In the present work we study the time evolution ofψ1s and
ψ15swave functions of the hydrogen atom placed in an external
oscillating electric field. The pertinent time-dependent Schro¨-
dinger equation (in au) in cylindrical polar coordinates (F̃,z,φ)
is

where the potentialV is given by

In eq 5b the external potential for the monochromatic and
bichromatic laser pulses may be written as

To have a slow oscillation during and after the laser source being
switched on,ε is written in terms of the maximum amplitude
ε0 and the switch-on timet′ as

It may be noted that for a many-electron problem one may
either solve the associated TDSE or the corresponding general-
ized nonlinear Schro¨dinger equation within a quantum fluid
density functional framework,13,14,23 the latter being three-
dimensional even in the case of a many-electron system. To
construct the hardness kernel (eq 3), we need the Hohenberg-
Kohn universal functionalF[F]. For a many-electron system
F[F] may be taken as14

where the first term is the macroscopic kinetic energy, the last
term is the exchange-correlation energy, andT[F] is the intrinsic
kinetic energy given by14

where T0[F] is the Thomas-Fermi functional,3 Tw[F] is the
Weizsäcker functional,3 λ is a constant,14 and a(N) is an
N-dependent parameter.14

For obtaining the global hardnessη (eq 2b) we also require
the Fukui functionf(r). We employ the following local formula
for f(r),

where the local softnesss(r) is given as follows as prescribed
by Fuentealba24

For calculatingη(r,r′) of the above equation the following local
form for F[F] is used:14

where the local kinetic energy25 and the electron-electron
repulsion energy26 may be taken as14

and

Note that the above treatment is applicable to many-electron
systems and all electron-electron interaction terms would be
absent in the case of a hydrogen atom.

To follow the polarizability dynamics the dynamic polariz-
ability is defined as13,14

where Dind
z (t) is the electronic part of the induced dipole

moment andFz(t) is the component of the external Coulomb
field along thez-axis.

The phase space volume or the uncertainty product,Vps, has
been shown27 to be an important diagnostic of the quantum
signature of classical chaos27 as related to the compactness of
the electron cloud.28 For the present problem it may be defined
as

A sharp increase inVps(t) implies a chaotic motion27 since it is
a measure of the associated quantum fluctuations.27

III. Numerical Solution

The TDSE (eq 5) is solved numerically as an initial boundary
value problem using an alternating direction implicit method.29

The solution procedure begins with theψ1s andψ15s analytical
wave functions of the hydrogen atom. Since the electron density
varies rapidly near the nucleus and relatively slowly elsewhere,
we transform the variables as follows

and
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Eq 5 takes the following form in the transformed variables once
an analytical integration is carried out over 0e φ e 2π,

The resulting tridiagonal matrix equation is solved using a
Thomas algorithm. The mesh sizes adopted here are∆x ) ∆z
) 0.4 au and∆t ) 0.01 au, ensuring the stability of the forward-
time-central-space type numerical scheme adopted here.

The initial and boundary conditions associated with this
problem are

The numerical scheme is stable30 due to the presence ofi )
(-1)1/2. As a further check of the numerical accuracy, we have
verified the conservation of the norm and energy (in zero field
cases). The wave function is moved forward to the end of the
simulation and then taken back to its initial position by reversing
the time direction, where the original profile is reproduced well
within the tolerance limit of the present calculation. All
calculations have been done in double precision. The field
parameters are chosen asε0 ) 1.0, t ) 1.0,ω1 ) 5π, andω2 )
3π. All quantities are in atomic units unless otherwise specified.

IV. Results and Discussion

The time dependence of different quantities are depicted in
Figures 1-4. Unless otherwise specified, in all the figures, I
and II, respectively, refer to the monochromatic and bichromatic
external fields whereas a and b refer to theψ1s and ψ15s

electronic states, respectively, of the hydrogen atom.

Figure 1 presents the time dependence of the external field,
while that of chemical hardness (η) is presented in Figure 2.
For both one- and two-color casesη is much larger for then )
1 state than that of then ) 15 state for the whole time range.
This may be considered to be a dynamical variant of the MHP.
Hardness oscillates in time in all the cases. However, the
oscillation is neither in phase nor out of phase with respect to
the oscillations in the external one- and two-color fields. It is
expected because of the fact that as soon as the laser is switched
on, there starts a tug-of-war between the atomic nucleus and
the external field to govern the electron-density distribution.
The nucleus tries to make the density distribution spherically
symmetric owing to the central nature of the nuclear Coulomb
field while the cylindrical symmetry of the applied electric field
tries to create an oscillating dipole that emits radiation including
higher harmonics. Overall density oscillation becomes nonlinear
due to the interplay of two different types of effects. Both the
amplitude and the frequency of oscillation are larger in the two-
color situation. Hardness for then ) 1 state decreases (for both
the cases I and II) and attains a more or less steady value at the
end of the simulation, which is still very large in comparison
to the corresponding value for then ) 15 state. Theη values
at this point are respectively 0.006 372, 1.91× 10-5 and
0.006 368, 1.93× 10-5 for the cases Ia,b and IIa,b. For both
the cases I and II,η values relative to the corresponding values
in absence of the field (not shown) are much larger for then )
1 state. It appears that a relatively smallerη value signals a
possible chaotic dynamics.

Polarizability values as they evolve in the course of time are
presented in Figure 3. It oscillates with a frequency that is double
that of the external field. The extrema in the external field
correspond to the minima inR and the latter blows up when

Figure 1. Time evolution of the external electric field: (I) monochro-
matic field; (II) bichromatic field.

Figure 2. Time evolution of global hardness (η) for a hydrogen atom
subjected to (I) a monochromatic electric field (a) with initial state
Ψ1s and (b) with initial stateΨ15s or to (II) a bichromatic electric field
(a) with initial stateΨ1s and (b) with initial stateΨ15s.
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the field is zero. The infimum values up to the end of the
simulation for the cases Ia,b and IIa,b are respectively 3.91×

10-5, 0.01 and 3.99× 10-5, 0.11. The minimum polarizability
principle reveals itself in a time-dependent situation.

Finally, Figure 4 depicts the dynamics of the uncertainty
product. As in the case ofη, Vps also oscillates neither in phase
nor out of phase with the external field. Both the amplitude
and the frequency are larger in the two-color case. For then )
1 stateVps retains its initial (t ) 0) small value whereas for the
n ) 15 state it increases quickly to a very large value. TheVps

values for the cases Ia,b and IIa,b at the end of the simulation
are 11.54, 638.92 and 11.63, 888.90, respectively. The increase
in Vps value is much more in then ) 15 state in comparison to
that in then ) 1 state for both monochromatic and bichromatic
cases. SinceVps measures the quantum fluctuations, a chaotic
trajectory is generally associated with largeVpsvalues.27 “...large
increases inVps can be expected to accompany a chaotic
trajectory. Conversely, small to moderate increases inVps can
be evidence that given quantum mechanical trajectory should
be regarded a nonchaotic”.27a In general, the electrons are
“tightly bound” and hence the distribution is “less diffuse” for
the n ) 1 state and “loosely bound” for then ) 15 state and
the system is expected to be harder and less polarizable for the
ground state.1-4,15 Again, the electron density being more
compact in the ground state, the corresponding uncertainty
product is expected28 to be small. Once the external field is
switched on, the ground state density would be distributed over
a larger volume and consequently there would be a decrease in
η and an increase inR andVps of the system. Since a smaller
η value is accompanied with a largerVps value and vice versa
andVps is known27 to bear the signature of the classical chaos
in the corresponding quantum domain behavior, hardness can
as well be considered to be a diagnostic of the chaotic dynamics
in a quantum system. It deserves a thorough study including
other quantum chemical problems.

Figure 3. Time evolution of electric polarizability (R) for a hydrogen atom subjected to (I) a monochromatic electric field (a) with initial stateΨ1s

and (b) with initial stateΨ15s or to (II) a bichromatic electric field (a) with initial stateΨ1s and (b) with initial stateΨ15s.

Figure 4. Time evolution of phase volume (Vps) for a hydrogen atom
subjected to (I) a monochromatic electric field (a) with initial state
Ψ1s and (b) with initial stateΨ15s or to (II) a bichromatic electric field
(a) with initial stateΨ1s and (b) with initial stateΨ15s.
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V. Concluding Remarks

Dynamics of a hydrogen atom in its ground state and a highly
excited electronic state in the presence of monochromatic and
bichromatic laser pulses have been studied in terms of the time
evolution of the hardness, polarizability, and uncertainty product.
The atom is harder and less polarizable and has a smaller phase
volume for the ground state. For both the laser pulses the
increase in the uncertainty product for the excited state is very
large, which implies a possible chaotic dynamics. A larger
hardness value, on the other hand, is expected to characterize a
regular behavior.
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