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Chemical Hardness as a Possible Diagnostic of the Chaotic Dynamics of Rydberg Atoms in
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The possible signature of chaos in Rydberg atoms has been studied in terms of the dynamic profiles of the

chemical hardness;), polarizability @), and uncertainty product/s). A hydrogen atom in the electronic
ground stater{= 1) and in an excited electronic state= 15) behaves differently when placed in both one-
and two-color laser pulses. Temporal evolutionpf, andV,s for these two casesi= 1 andn = 15) show
marked differences. It appears that a larggyand a smaller; value signal a chaotic behavior.

I. Introduction

Chemical hardne$s® (i) has turned out to be a cardinal index
of molecular structure, reactivity, bonding, and dynamics.
Pearsohintroduced the concept of hardness in the chemistry
literature through his famous hardoft acid-base (HSAB)

principle, which can be stated as “hard likes hard and soft likes

soft in an acid-base reaction”. Density functional theéfy
(DFT) has provided the following quantitative definitfonf
hardness for arN-electron system with total enerdy and
external potentiab(r):

1 82E)
=1— 1
7 2(3N2 () @)
Equivalently, it can be expressecPas
n= [ [n(r.r) () () dr dr’ (2a)

or as its following approximate version, as suggested by
Berkowitz et al’
— 1 I T T
n=.J a0 ) p(r) dr (2b)

wheref(r) is the Fukui functioR® and the hardness kernel is
defined a$
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where F[p] is the HohenbergKohn universal functionélof
DFT.

Another important electronic structure principle based on the
concept of hardness is the maximum hardness prirciple
(MHP). The MHP is stated &%“there seems to be a rule of

n(r.r) ®)

fixed v(r) can be measured by On the other hand, the linear
response functiditakes care of the variation ofr) at constant
N. If the system is acted upon by a weak electric field,
polarizability () may be used as a measure of the corresponding
response. A minimum polarizability princige® has been
proposed, which may be written as “a stable configuration or a
favorable process is associated with minimum polarizability”.
Dynamics of these reactivity parametepsahda) have been
studied®14in the contexts of various time dependent processes.
Whethery and o can provide some insight into the quantum
domain behavior of a classically chaotic system is yet to be
analyzed. Rydberg atoms and molecules in an oscillating electric
field have been considered to be “veritable gold mines for
exploring the quantum aspects of cha#sDepending on the
frequency and the field intensity, hydrodéd” and helium®
atoms in the presence of an external field have been shown to
exhibit regular/chaotic dynamics. Both quantum fluid dynam-
icst®20(QFD) and quantum theory of moti&#2 (QTM) have
provided quantum signatures of chaos in Rydberg atoms. In
QFD' the overall motion of the system under consideration is
mapped onto that of a “probability fluid” having densjiyr t)
and current density(r,t) under the influence of the external
classical potential augmented by a quantum potéfitilgiven
Vzpl/z(r,t)

by
(5
U = —|—

andp(rt) andy(r,t) (j = pVy) are respectively obtainét??
from the amplitude and the phase of the wave function. In
QTM,2! a physical system is described in terms of “wave and
particle”. While the wave motion is governed by the solution
to the time dependent Scidinger equation (TDSE), the particle
motion is followed by solving the pertinent Newton equation
of motion with forces originating from both classical and

(4)

nature that molecules arrange themselves so as to be as hard @#/antum potentials. Important insight into the chaotic dynamics

possible”. Formal proofs of both HSAB! and maximum
hardness principlé3have been furnished using DFT.

The complete characterization of Birparticle system under
the influence of the external potentialr) needs onlyN and
v(r). The response of the system subjected to a chanbjain
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has been obtainétithroughp versus—y plots in QFD, where
it has been showf that p and —y can be considered to be
“canonically conjugate”. In QTM they are obtairfédh terms
of the distance between two initially close Bohmian trajectories
and the associated Kolmogore®inai entropy.

In the present paper we monitor the possible regular/chaotic
dynamics through the time evolution of various reactivity indices
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of a hydrogen atom in the ground and highly excited electronic ~ For obtaining the global hardnesgeq 2b) we also require
states in the presence of one-color and two-color laser pulsesthe Fukui functiorf(r). We employ the following local formula
The theoretical background of the present work is provided in for f(r),

section Il. Section Il presents the numerical details, and the

results and discussions are given in section IV. Finally, section s(r)

V contains some concluding remarks. f) = o0 o (7a)

Il. Theoretical Background where the local softnesgr) is given as follows as prescribed

In the present work we study the time evolutionyofs and by Fuentealb#
yisswave functions of the hydrogen atom placed in an external )
oscillating electric field. The pertinent time-dependent Sehro () = orr—r) (7b)
plinger equation (in au) in cylindrical polar coordinat@s,p) 2n(r,r")
is
For calculating(r,r') of the above equation the following local
8 rt form for F[p] is used'4
[— o2y ]w(r = ”’( ) (5a)
Flocal[p] — Tlocal[p] + Vlé)ecal[p] (7C)

where the potential is given by where the local kinetic energy and the electronelectron

1 repulsion energ’d? may be taken 84

V=== Uy (5b)
' ocal 3 2\1/3 p4/3/ r
T[] = Telp] + 2, B7) Sz ar (@)
In eq 5b the external potential for the monochromatic and 14 1P
bichromatic laser pulses may be written as 0.043
Vet = € SiN(w t)z  for monochromatic pulse (5¢) and
= 0.5 [ sin(w,t) + sin,t)]z Vie™p] = 0.79370 — 1) [p*°ar (7€)

for bichromatic pulse (5d) Note that the above treatment is applicable to many-electron

systems and all electrerelectron interaction terms would be
absent in the case of a hydrogen atom.

To follow the polarizability dynamics the dynamic polariz-
ability is defined a¥*14

a(t) = |DigO1/IF )] (8)

where Dj (t) is the electronic part of the induced dipole
moment andF(t) is the component of the external Coulomb
|_field along thez-axis.

The phase space volume or the uncertainty prodisthas
been showf to be an important diagnostic of the quantum
signature of classical chadsas related to the compactness of
the electron cloud® For the present problem it may be defined
as

Vo = (10— (BT, — (P.0VIGp — B0z — 2073

1 2
Flpl =5 rE)|Vy(r,t)|dr + T[p] +
[e] 2 f P DIV D) [e] A sharp increase iWpg(t) implies a chaotic motiof since it is
o(r, t) p(r )] a measure of the associated quantum fluctua#iéns.
3 S drdr + Bl (63)

To have a slow oscillation during and after the laser source being
switched ong is written in terms of the maximum amplitude
€o and the switch-on timé& as

€ = ¢gt/t’ foro<t=<t (5e)

=¢, otherwise (5f)

It may be noted that for a many-electron problem one may
either solve the associated TDSE or the corresponding genera
ized nonlinear Schidinger equation within a quantum fluid
density functional frameworlé1423 the latter being three-
dimensional even in the case of a many-electron system. To
construct the hardness kernel (eq 3), we need the Hohenberg
Kohn universal functionaF[p]. For a many-electron system
Flp] may be taken &4

I1l. Numerical Solution

where the first term is the macroscopic kinetic energy, the last The TDSE (eq 5) is solved numerically as an initial boundary

term is the exchange-correlation energy, afje is the intrinsic ~ value problem using an alternating direction implicit metfdd.

kinetic energy given by The solution procedure begins with thies andy1ssanalytical
wave functions of the hydrogen atom. Since the electron density

4/3 : : .
_ B _pIr varies rapidly near the nucleus and relatively slowly elsewhere,
Tlel = Tolp] + Tulol — a(N)4 f rol3 dr (6b) we transform the variables as follows
1+ L
0.043 y=py (102)
where To[p] is the Thomas-Fermi functionalf T,[p] is the and

Weizsaker functionaf A is a constant? and a(N) is an
N-dependent parametét. p=x (10b)
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Figure 1. Time evolution of the external electric field: (I) monochro-
matic field; (1) bichromatic field.

Eq 5 takes the following form in the transformed variables once
an analytical integration is carried out over<0¢ < 27,

{(i)a_y _ (A)iy _ iy} . (1 .
a3x \allad o] X
The resulting tridiagonal matrix equation is solved using a
Thomas algorithm. The mesh sizes adopted heré\are Az

= 0.4 au and\t = 0.01 au, ensuring the stability of the forward-
time-central-space type numerical scheme adopted here.

The initial and boundary conditions associated with this
problem are

dy

ot (11)

ZU)y =2

y(X,2) is known for  [x,z, att=0 (12a)
y(0,2 =0=y(0,2 Ozt (12b)
yx,£0)=0 Oxt (12¢c)

The numerical scheme is staBlelue to the presence of=
(—1)Y2. As a further check of the numerical accuracy, we have
verified the conservation of the norm and energy (in zero field
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Figure 2. Time evolution of global hardness)(for a hydrogen atom
subjected to (I) a monochromatic electric field (a) with initial state
W and (b) with initial statéV;ssor to (1) a bichromatic electric field
(a) with initial stateW,s and (b) with initial staté¥;ss

Figure 1 presents the time dependence of the external field,
while that of chemical hardnesg)(is presented in Figure 2.
For both one- and two-color casgss much larger for then =
1 state than that of the = 15 state for the whole time range.
This may be considered to be a dynamical variant of the MHP.
Hardness oscillates in time in all the cases. However, the
oscillation is neither in phase nor out of phase with respect to
the oscillations in the external one- and two-color fields. It is
expected because of the fact that as soon as the laser is switched
on, there starts a tug-of-war between the atomic nucleus and
the external field to govern the electron-density distribution.
The nucleus tries to make the density distribution spherically
symmetric owing to the central nature of the nuclear Coulomb
field while the cylindrical symmetry of the applied electric field
tries to create an oscillating dipole that emits radiation including
higher harmonics. Overall density oscillation becomes nonlinear
due to the interplay of two different types of effects. Both the
amplitude and the frequency of oscillation are larger in the two-

cases). The wave function is moved forward to the end of the color situation. Hardness for thre= 1 state decreases (for both

simulation and then taken back to its initial position by reversing
the time direction, where the original profile is reproduced well
within the tolerance limit of the present calculation. All

the cases | and Il) and attains a more or less steady value at the
end of the simulation, which is still very large in comparison
to the corresponding value for the= 15 state. The; values

calculations have been done in double precision. The field at this point are respectively 0.006 372, 1.91 10> and

parameters are chosenegs= 1.0,t = 1.0,w; = 57, andw, =
3. All quantities are in atomic units unless otherwise specified.

IV. Results and Discussion

0.006 368, 1.93«x 10°° for the cases la,b and lla,b. For both
the cases | and Il values relative to the corresponding values
in absence of the field (not shown) are much larger fortke

1 state. It appears that a relatively smaliervalue signals a

The time dependence of different quantities are depicted in POsSible chaotic dynamics.

Figures 4. Unless otherwise specified, in all the figures, |

Polarizability values as they evolve in the course of time are

and Il, respectively, refer to the monochromatic and bichromatic presented in Figure 3. It oscillates with a frequency that is double

external fields whereas a and b refer to ties and yiss
electronic states, respectively, of the hydrogen atom.

that of the external field. The extrema in the external field
correspond to the minima ia. and the latter blows up when
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Figure 3. Time evolution of electric polarizabilityo) for a hydrogen atom subjected to (I) a monochromatic electric field (a) with initial $taje
and (b) with initial staté¥;ss or to (ll) a bichromatic electric field (a) with initial stat®s and (b) with initial statéV;ss
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Figure 4. Time evolution of phase volumé&/{y) for a hydrogen atom

subjected to () a monochromatic electric field (a) with initial state

Wisand (b) with initial statéVssor to (1) a bichromatic electric field

(a) with initial state®s and (b) with initial staté¥1ss

the field is zero. The infimum values up to the end of the
simulation for the cases la,b and lla,b are respectively 391

1075, 0.01 and 3.9% 1075 0.11. The minimum polarizability
principle reveals itself in a time-dependent situation.

Finally, Figure 4 depicts the dynamics of the uncertainty
product. As in the case af, Vpsalso oscillates neither in phase
nor out of phase with the external field. Both the amplitude
and the frequency are larger in the two-color case. Fontie
1 stateVps retains its initial { = 0) small value whereas for the
n = 15 state it increases quickly to a very large value. Vhe
values for the cases la,b and lla,b at the end of the simulation
are 11.54, 638.92 and 11.63, 888.90, respectively. The increase
in Vpsvalue is much more in the = 15 state in comparison to
that in then = 1 state for both monochromatic and bichromatic
cases. Sinc#®,s measures the quantum fluctuations, a chaotic
trajectory is generally associated with laggvalues?’ “...large
increases inVps can be expected to accompany a chaotic
trajectory. Conversely, small to moderate increasegpircan
be evidence that given quantum mechanical trajectory should
be regarded a nonchaoti€’® In general, the electrons are
“tightly bound” and hence the distribution is “less diffuse” for
then = 1 state and “loosely bound” for the= 15 state and
the system is expected to be harder and less polarizable for the
ground staté *15 Again, the electron density being more
compact in the ground state, the corresponding uncertainty
product is expecteéd to be small. Once the external field is
switched on, the ground state density would be distributed over
a larger volume and consequently there would be a decrease in
n and an increase io andVps of the system. Since a smaller
n value is accompanied with a larg€ys value and vice versa
and Vs is knowr?” to bear the signature of the classical chaos
in the corresponding quantum domain behavior, hardness can
as well be considered to be a diagnostic of the chaotic dynamics
in a quantum system. It deserves a thorough study including
other quantum chemical problems.
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279. InNonlinear Dynamics and Computational PhysiSheorey, V. B.,
) o ) Ed.; Narosa: New Delhi, 1999; pp 453. In the last two papekssin(wt)
Dynamics of a hydrogen atom in its ground state and a highly is plotted against in Figures 1 and 8, respectively.
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The atom is harder and less polarizable and has a smaller phasgep.1987 154, 77. Hasegawa, H.; Robnik, M.; Wunner, Brog. Theor.
volume for the ground state. For both the laser pulses the Eggg- §4u213ﬁgélgg9H98, 19(18-JGEne§hanli KI:P hakshLmari%g,alVEﬁé Fég.

; ; ; ; ; . Howard, J. E.; Farelly, Rhys. Lett. .
increase in the uncertainty product for the excited state is very oo 5" o0 'y phys Re. Lett. 1087, 59, 1809. Delande, DChaos
large, which implies a possible chaotlc dynamics. A Iarg_er and Quantum Physic&lsevier: Amsterdam, 1991. Friedrich, H.; Wintgen,
hardness value, on the other hand, is expected to characterize &. Phys. Rep1989 183 37. Holle, A.; Weibusch, G.; Main, J.; Hager, B.;

V. Concluding Remarks

regular behavior.
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